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the A r = | rule. In this way we get 

R(Kf- > 2 T ) 

/OgrNNy/gwNN1/^ / 

= /*W*+2( ) ( — ) / / *» ' 
\ grNN 1 \g1lNN2/4n/ ' 

-+2* , (12) 

where we have used expression (8) for Gnv. JR*-***** and 
JKI*-+U are the weak-coupling constants for the decays 
K+ —> rj°+TT+ and iTi° —* 2w, respectively, both of which 
are allowed by a pure AT=% rule. But 7j°w+ is a T= 1 
state while the 2x mode in Ki° decay is a T= 0 state, so 
that if we take 

we get 
R(K+-**+*») 1 

i?(Z1°-^27r) ~444* 

with giNN2/^*- again equal to 2 and (5g/g)~l%. This 
result is unchanged if 5g/g«0.7% and g,2vw2/4?r~l. 

There is now some experimental evidence for the 
violation of the AT= J rule in the 3w decay of K20, and 
the 17 can also be responsible for such a violation if we 
consider the sequence 

However, in the absence of any workable procedure to 
estimate the strength of the weak vertex K20 —» y0, we 
do not give any numerical estimate. 

That we have been able to correlate so many different 
processes through the rj meson is a consequence of the 
quantum numbers 0"+, T=0 assigned to the rj meson. 

Lastly let us consider the total decay rate for 

K20 —> x+X-TT° as given by Eq. (7). This can be calcu
lated provided that we know GJS>. One can approxi
mately fix GKX if one assumes that the 2~~—> n+ir is 
dominated by the K pole. Then 

fgnN^\ Px 
r(2--»»+ir-) = 2 )GKT2 , 

where 
(2±A02-7r2r /22-A7 2+A2 11/2 

(13) 

2S2 

the db correspond to the cases of scalar and pseudo-
scalar KXN coupling, respectively. Eliminating GKr 
between (7) and (13) and using27 2£(2~—>n+T~) 
= 0.6X1010 sec"1 and X / 4 T T « - 0 . 1 5 , we find for the 
pseudoscalar coupling constant g^NK2/^ the values 3 
to 1.5 according as28 R(K2°-->T+<ir-7c0)==LSXW sec"1 

or 3X106 sec-1. For scalar K2N coupling, 

g W / 4 x « 0 . 0 3 . 
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It is shown that the first-order approximations, for central potential scattering, of Brysk and of the 
determinantal method are equivalent. 

IN a recent paper1 Brysk has presented a new approxi- for a spherically symmetric potential, is 
mation for scattering from a potential. He obtains 

this approximation by iterating on the asymptotic f00 

expression for the scattered wave in an asymptotically 
valid equation for the exact wave function. His result, t * ̂  _ 

* Supported in part by the U. S. Air Force Office of Scientific 
Research. 

1 H. Brysk, Phys. Rev. 126,1589 (1962). Jo 
1-k rHr ji(kr)nt(kr)U(r) 

(1) 
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where U(r)h2/2m is the scattering potential, and 
jiikr) and tii(kr) are the usual spherical Bessel and 
Neumann functions. 

The purpose of this note is to point out that this 
result is completely equivalent to the lowest order 
approximation in the determinantal method2 based on 
the Fredholm solution for an integral equation.8 This 
method considers the determinant 

to form a continuum and 

rk=r(E0k)dEok-

Hence, one has the exact expression 

tan«i=irrj(J3) / | 1 + P / — dE'\ 

(7) 

(8) 

£>(£) = deti ) 
\ E-Ho J 

(2) 

Since D(E) has poles at the unperturbed energies, EM, 
and equals unity for F=0, it may be written in the form 

D(E)=l+ZE0krk/(E-EQk). (3) 

An expansion of D(E) in powers of V shows that 

r*=-<Eo*|7|£o*> 

where we have evaluated explicitly for the /th angular 
momentum state. 

For the lowest order approximation, one takes the 
first term in the expansion (4) for rk. This gives 

r(E)=-(EQk\V\Eok)m/m 

1 r00 

= — k t*dr ji2(kr)U(r), 
T Jo 

with our normalization. Hence, 

(9) 

+ Z - E 
E01,E02," ' EOn 

n(-i-) 
<-i \Eok-EoJ 

tan5;=-
Jo 

k Mrj?(kr)U(r) 

X 

(Eok | V | Eok) (E0k | V | JEoi> • • • <£o* I V | £„„> 

<£oi|F|£o*} (E01\V\EM)--- \ 

(E0n | V | £„*> <£on | V | £01> • ' • {Eon | V | Eon) 

1-
1 r dE' r° 

K J E-E' Jo 

-, (10) 

Mr j?(k'*)U{r) 

(4) 

where the \E$k) are eigenstates of HQ. This series 
converges for all strengths of the potential provided 

and 

/

OO 

* 

dr rV(r) < <*> 

(5) 

7(r)<< 

where E'=m'2/2tn and E=fi?k2/2tn. 
The numerator in (10) is the same as that in (1), and 

is, of course, just the Born approximation. To show 
that the denominators are the same, we must evaluate 
the principal part integration in (10) and show that 

1 r dE' 
-PI ifc'i*1 (* >) — *i«(*r)»i(*r), (11) 
w Jo E-E' 

or, introducing the ordinary Bessel and Neumann 
functions, and letting z=£f, z'=kfr, we must show that 

-JwW)=-Jwt{z)Nwn(z). (12) 

For the case of scattering, one can show2 that 

r r(E')dE' 
Tr(E)cot8(E)=l+P , (6) 

Jo E-E' 

where we have now taken the unperturbed energy levels 

i r 2 
- P / dz'— 
T Jo 2'2" 

2 J. Schwinger, unpublished lectures at Harvard University, 
1955; M. Baker, Ann. Phys. (N. Y.) 4, 271 (1958). These refer
ences develop the method for meson-nucleon scattering as well as 
for potential scattering. 

3 E. T. Whittaker and G. N. Watson, A Course of Modem 
Analysis (Cambridge University Press, New York, 1952), Chap. 
XL See also T. Wu and T. Ohmura, Quantum Theory of Scattering 
(Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1962), Sec. B. 

But this follows immediately from the relation4 

2 r00 z' 
Km- / dz' J*(z') 
^-TJO z't-iz+hy 

= M*)liJ>(z)-N,(z)l. (13) 

Hence, we have shown the equivalence of (10) and (1). 
The expansion (4) then provides a simple systematic 
method of generating convergent higher order approxi
mations to (1). 

4 G. N. Watson, Theory of Bessel Functions (Cambridge Univer
sity Press, New York, 1958), p. 429. 
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